
Tasty Malware Analysis with T.A.C.O.
Bringing Cuckoo Reports into IDA Pro

Ruxcon 2015
Jason Jones

2

Who Am I?
• Sr. Security Research Analyst for Arbor Networks’ ASERT
• Attend AHA! in Austin semi-frequently

• Welcome to the track!
• Speaker at

– BlackHatUSA / Botconf / AusCERT / REcon
• Research interests

– RE automation
– Malware clustering
– Graph database applications to Reverse Engineering / Threat Intel

3

Agenda
• Similar Work
• Malware Behaviors
• Cuckoo Sandbox
• TACO

– Features
– UI
– Demo
– Future Work

Similar Work

5

Similar Work
• Nothing (that I know of) uses Cuckoo as it's

mechanism for propagating data into an IDB
• Inspired by similar work from many authors
• UI takes inspiration from IDAScope by Daniel

Plohmann (@push_pnx)
• Excellent plugin, in my toolbox

6

funcap
• https://github.com/deresz/funcap
• IDA Pro script to add some useful runtime info to static

analysis.

https://github.com/deresz/funcap

7

IDA Pro pintracer
• Maintained by Hex-Rays
• Highlights executed instructions
• Can also track registers

8

Joe Sandbox
• Commercial product from Joe Security
• Can produce execution graphs
• Claims to have similar plugin

• Never used personally
• Seeing that they were using API traces gave

inspiration to look into doing similar with
Cuckoo

• Opted to not attempt to find code so my
plugin would be "clean"

Malware Analysis Challenges

9

10

Packers / Crypters
• Compress or encrypt code, designed to make malware less

detectable
• UPX most popular packer (also watch out for things that look

like, but are not UPX)
• Lots of packers with various trial licenses
• TitaniumCore by ReversingLabs can help automate
• No known (to me) auto un-crypters
• PIN, Dynamo Rio have tools to facilitate
• IDA Pro as a "universal unpacker" that has been useful at times

11

Self Modifying Code
• Exhibited by numerous malware families

• Shylock
• Andromeda / Gamarue

• Modify code that already exists instead of allocating
new memory to unpack

• Usually will be stomped during execution
• More problematic to do automated dumps

12

Process / DLL Injection
• Can be done via

• CreateRemoteThread (Suspended)
• QueueUserAPC
• Process Hollowing

• Cuckoo uses injection to get monitor DLL into
malicious processes

13

DLL Side Loading
• Popular technique with targeted malware

• PlugX
• HTTP Browser RAT

• Load malicious DLL into legit (signed) executable
• Bypass (some) AV
• Bypass requirements of running code in signed

exe

Cuckoo Sandbox

14

15

Cuckoo Sandbox
• Likely most popular open-source / free sandbox available
• 2.0 Supports Android (via emulator), Linux, and x64 analysis

• Switch to new monitor code
• Third-party kernel introspection support - "zer0m0n"
• Popular fork "cuckoo-modified" by @spender of Optiv, Inc. (Accuvant)

• https://github.com/brad-accuvant/cuckoo-modified
• Contains bugfixes + additions to old cuckoomon not available in -

trunk
• Cuckoo 2.0 solves many of the issues we relied on -modified fork

for and adds new things

https://github.com/brad-accuvant/cuckoo-modified

16

Cuckoo Sandbox
• Multiple analysis methods
• Cuckoo Monitor DLL injected into spawned process

• Injects into any other spawned / injected processes
• Hooks many common API calls
• Nothing is immune to un-hooking, including Monitor

• Logs
• Win32 API calls
• Registry
• Created / Modified Files

• Postprocessing Signatures

17

Cuckoo Behavior Report

18

Cuckoo Behavior - Calls
Caller / Parent Caller Addresses

19

Cuckoo Behavior JSON -Modified

20

Cuckoo Behavior JSON -2.0

21

ASERT's Sandbox Usage
• Treat Cuckoo (and other sandboxes) as a black-box

• Malware in, report / memory dumps / files out
• Tasks deleted upon completion

• Centralized malware processing system
• Normalize + insert results
• Post-processing of memory, network traffic, behavior
• Custom post-processing of specific families to

extract various sample properties

22

Cuckoo API Additions needed
• Cuckoo can produce a process dump

• This is not loadable by IDA Pro (AFAIK)
• Can be extremely large, especially in case of

{explorer,svchost,iexplore,etc.}.exe
• Can also produce full RAM dump
• Volatility has plugins to dump processes, DLLs, VADs

• Dumping process as a PE not supported natively by Cuckoo
• Due to time needed to use volatility, decided that was not the right place
• Don't always want dumps, sometimes we need to do "extra"

• Added new API call to allow for arbitrary volatility plugins to run "on-demand"

23

API Additions needed (cont)
• Run volatility against ramdump to get process dumps

for all PIDs known
• Injection detected = run malfind and dump pages

• Stitch dumped memory pages into process dumps
for "complete" view

• Supports family specific behavior
• DLL dump
• Specific process / memdumps

24

Dumping Memory
• That said... malfind doesn't always find everything

• Will not dump DLL injected with CreateRemoteThread by design
• Permissions stomp = undetected
• Walk the Cuckoo API Calls per process

• Get list of memory ranges that contain executed code
• Run vadwalk for the PID
• Parse the output and find all the required VAD's to cover what got

executed
• Request those VADs and then order with malfind VAD's and stitch

an executable together
• Using that dump, can now follow execution much better

25

Creating the Memory Dump
• Attempted to add as sections using http://git.n0p.cc/?p=SectionDoubleP.git

• Works great for any case where section is above ImageBase
• BUT many malwares like to inject below the ImageBase

• Modify ImageBase
• Modify each existing section's VirtualAddress
• Modify AddressOfEntryPoint
• Add Sections...
• Fail.
• Fallback to using IDA Pro segment create / put_many_bytes
• Non-ideal, but IDA plugin requires IDA Pro...

• Non-trivial method of creating dumps, but worth it

http://git.n0p.cc/?p=SectionDoubleP.git

26

Memory Dump Process Output
• python create_voldump.py --task 294832 --pid 3816
• [+] Base memory range: 01000000 -> 01005600
• [+] Interesting page: 0x000C0000
• [+] Interesting page: 0x00B40000
• [+] Interesting page: 0x00B50000
• [+] Interesting page: 0x00B60000
• [+] Interesting page 0x000C0000 is in VAD 0x000C0000 - 0x000DCFFF
• [+] Interesting page 0x00B40000 is in VAD 0x00B40000 - 0x00B70FFF
• [+] Interesting page 0x00B50000 is in VAD 0x00B40000 - 0x00B70FFF
• [+] Interesting page 0x00B60000 is in VAD 0x00B40000 - 0x00B70FFF
• [+] Retrieving VAD 0x000C0000
• [+] Retrieving VAD 0x00B40000
• [+] Generating IDB with new memory regions
• [+] IDB available at explorer.exe-3816.idb

TACO

27

28

Overview
• Started out as dynamically generated Python scripts

• Clunky, prevented from doing "cool" things
• Dynamically generating "clean" IDAPython is hard
• Some features incompatible with Cuckoo 1.2 due to lack of call

metadata
• Cuckoo-Modified and current Cuckoo 2.0-dev branch supported

supported for markup
• Cuckoo 2.0-dev is still a WIP as some oddities are

encountered
• Idea sprung out of Joe Security's posts about execution graphs and

seeing they imported analysis info into IDA
• Prior usage of tools like funcap and IDA's pintracer

29

TACO Overview
• What does TACO stand for?

• It's fluid..
• Considered naming TACOZ - Tasty Analysis using Cuckoo Output and Zoidberg

• Because why not Zoidberg?
• Consists of Cuckoo-based tabs for showing:

• Processes
• API Calls
• Signatures
• Imports

• Also includes other IDAPython scripts I have developed
• Byte / Stack String viewer
• "Interesting" XOR locator
• Switch Jump / Case statement viewer

30

Loader Tab
• Main location to show a process tree and allow for specific

processes to be inspected

Injected, not created so does not appear
in the tree under the main process

• Reproduction of Cuckoo's Output
• Filterable / Searchable / Clickable

31

API Call Tab

Filterable by Category

Filterable by Call / Argument value

Each row Color-coded and double-clickable

• Add / Remove Markup to IDB
• All
• Category

• Context menu
• Markup per Instruction
• Copy value

32

API Call Tab (cont.)

33

Imports Tab
• Tries to detect dynamic imports via direct / indirect calls

34

Cuckoo Signatures Tab
• Simple Display of Cuckoo Triggered Signatures

35

Switch Viewer
• Switch jumps in malware can indicate config or cmd parsing

36

Byte String / Stack String Finder

37

XOR Locator

38

DEMO
• TACO Time!

• Shifu (banker)
• Andromeda (loader / stealer)
• PlugX (targeted)
• Etumbot (targeted)
• Fobber (banker, Cuckoo 2.0-dev)
• HttpBrowserRAT (targeted, Cuckoo 1.2)

Wrap-Up

39

40

Wrap-Up
• Hopefully you agree that a TACO is both a tasty treat and is a

useful tool to bring run-time info into IDA Pro
• All code is / will be freely available on GitHub

• https://github.com/arbor-jjones/idataco
• https://github.com/arbor-jjones/malware/create_voldump.py
• https://github.com/arbor-jjones/malware/ida_load_mem.py
• https://gist.github.com/arbor-jjones/18dd572e6b3e391e8418

https://github.com/arbor-jjones/idataco
https://github.com/arbor-jjones/malware/create_voldump.py
https://github.com/arbor-jjones/malware/ida_load_mem.py
https://gist.github.com/arbor-jjones/18dd572e6b3e391e8418

41

Future Work
• Add path-finding capabilities
• Direct comments to API call arguments with values
• Clean up filter code to allow for arg- or API call-specific filtering
• Rename vars / dwords used to store GetProcAddress result
• Rename unknown calls
• Determine way to achieve 'persistence' for names / ops (allow

more 'undo')
• SQLite?
• Marks?

• Batch mode to markup / rename things in IDB
• Support other sandboxes where possible

Questions/Comments/Feedback

42

Thank You!

