
Software
Defined
Networking
Security

Outline

● Introduction

● What is SDN?

● SDN attack surface

● Recent vulnerabilities

● Security response

● Defensive technologies

● Next steps

Introduction

● Security nerd, recovering climatologist

● Managed Red Hat's Java middleware security team

● Now manager of product security for Console, and
founder of the ODL and ONOS security teams

● Open source SDN is hot, with development being
driven by a wide range of commercial and non-
profit entities

● 2015 is emerging as the year when SDN starts to
move from the lab to widespread deployment for
production networks (Google, Pacnet, etc.)

● Is it secure?

What is SDN?

“SDN is an approach to computer
networking that allows network

administrators to manage network services
through abstraction of higher-level

functionality. This is done by decoupling the
system that makes decisions about where
traffic is sent (the control plane) from the
underlying systems that forward traffic to
the selected destination (the data plane).”

- The Wikipedia hive mind

SDN attack surface

SDN Attack Surface

● Traditional networks conflate the control and data
planes on a physical device

● Software-defined networks factor the control plane
out to a SDN controller.

● The controller uses a protocol such as OpenFlow to
control switches, which are now only responsible
for handling the data plane

● Advantage: easily segregate the control plane
network from the production data network

● Disadvantage: the SDN controller's ability to control
an entire network makes it a very high value target

SDN Attack Surface

SDN Attack Surface

● SDN controllers are also exposed via the data plane

● When an OpenFlow switch encounters a packet that
does not match any forwarding rules, it passes this
packet to the controller for advice.

● As a result, it is possible for an attacker who is
simply able to send data through an SDN switch to
exploit a vulnerability on the controller.

● Switches out of scope for this presentation. See
Gregory Pickett's BH 2015 talk if you're interested.

SDN Attack Surface

Recent SDN vulnerabilities

SDN Controller Vulns
● There are many competing SDN controller

implementations

● The two most prominent ones are open source,
written in Java/OSGi, and backed by many large
vendors

● OpenDaylight/ODL (Linux Foundation)

● ONOS (lots of Chinese backing: telcos, Huawei,
etc.)

Netconf CVE-2014-5035
● ODL Netconf API processes user-supplied XML (also

restconf)

● Example vuln code: controller / opendaylight/netconf/netconf-
util/src/main/java/org/opendaylight/controller/netconf/util/xml/XmlUtil.java

● Demo...

Topology spoofing via host
tracking CVE-2015-1611

● Most SDN controllers include host tracking, allowing
hosts to migrate between different physical
locations in the network.

● Host tracking is based on monitoring of Packet-In
messages, and does not require any validation,
authentication, or authorization.

● An attacker can impersonate a host and make the
SDN controller believe it has migrated to a physical
network location controlled by the attacker.

Topology spoofing via host
tracking CVE-2015-1611

● For an attacker to exploit this flaw, they only need
to be able to send malicious messages through a
switch controlled by an SDN controller (i.e. data
plane)

● The only pre-requisite is that the attacker must
know the MAC address of the target host. For more
details on this flaw, see:
http://www.internetsociety.org/sites/default/files/10
_4_2.pdf

http://www.internetsociety.org/sites/default/files/10_4_2.pdf
http://www.internetsociety.org/sites/default/files/10_4_2.pdf

DoS in ONOS packet
deserializer CVE-2015-1166

● When an OpenFlow switch encounters a packet that
does not match any forwarding rules, it passes this
packet to the controller for advice.

● It was found that the packet deserializers in ONOS
would throw exceptions when handling malformed,
truncated, or maliciously-crafted packets.

● The exceptions were not caught and handled,
which would result in the relevant switch being
disconnected because an exception occurred in an
I/O thread.

● Demo...

Defensive technologies

Topoguard
● The same research team that reported the topology

spoofing flaw developed topoguard to mitigate it

● Verifies the conditions of a host migration.

● A legitimate host migration would involve a Port
Down signal before the host migration finishes. It
would also mean that the host would be
unreachable at its old physical network location
after the migration is complete.

● Currently tightly coupled to the Floodlight controller

Security-mode ONOS
● A new feature targeting the upcoming ONOS

'Cardinal' release.

● Effectively a mandatory access control (MAC)
implementation for ONOS applications

● Applications can be constrained by a policy
dictating which actions they are permitted to
perform.

● A vulnerability in an ONOS application could not be
exploited to perform actions that are not permitted
by security-mode ONOS. This is similar to the
protection SELinux provides for applications
running on Linux systems.

Security response best practices

Open Source Security Response

● All information public

● Not just source code: bug trackers, mailing lists,
etc.

● Security requires the opposite approach:
information must be kept private until patches are
available

● How do you handle this in the context of an open
source project?

● A dedicated security team with a documented
process

Open Source Security Response

● Dedicated mechanism for reporting security issues,
separate to normal bugs

● Dedicated team with a documented process for
responding to these reports

● Ability to quickly build a patch asynchronous to
normal release schedules

● Clear documentation of the issue in an advisory,
including references to patch commits (advantage
of open source)

● More transparent than proprietary vendors
(FireEye, Oracle...)

Secure engineering best practices

Open Source Secure Engineering

● No well established best practices

● Few good examples in the open source world.
Proprietary software currently does this better, e.g./
microsoft's SDLC.

● OpenStack is one good example

● Separate VMT and OSSG teams

Open Source Secure Engineering

Open Source Secure Engineering

● Secure development guidelines (relies on
developers to implement)

● Developer training (I just did this for everyone in
the room, but it is“expensive” and difficult to roll
out in a virtual environment)

● Automated QE/CI jobs to catch issues and enforce
standards, e.g. via static analysis

● Static analysis with 56 bug patterns

● http://h3xstream.github.io/find-sec-bugs/

http://h3xstream.github.io/find-sec-bugs/

ODL: Current security status

ODL: Security Response
● Security reporting mechanism

● Dedicated team with a private mailing list and
basic process for handling issues

● Security advisories page

ODL: Secure Engineering
● Great analysis performed in May 2014, but no

action on fixing things. Cue the ODL summer
internship program.

ODL: Security vision

ODL: Security Vision
● Industry leading secure engineering function

● Security docs (e.g. best practice install guide)

● Developer training as part of committer onboarding

● Automated QE/CI jobs to catch issues and
regressions

● No reliance on documented secure coding standard
(automate any standards in QE/CI jobs)

Next steps

Next Steps
● More research into data plane → control plane

attacks

● Greater focus from the offensive security
community as a whole – so far only Pickett and I
seem to be looking

● Can we get a decent implementation not written in
Java?

● Big vendors: please give at least one single fuck!

Questions?

	Slide 1
	Modules
	Introduction
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	M2: CVE-2014-3490
	Slide 16
	M1: Authentication bypasses
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

