
A peek under the Blue Coat

ProxySG internals

Raphaël Rigo / AGI / TX5IT

Ruxcon - 2015-10-24

A peek under the Blue Coat

Outline

1 Introduction

2 Storage: filesystems and registry

3 Binaries

4 Kernel and OS mechanisms

5 Understanding internals

6 Security mechanisms

7 Conclusion

Ruxcon - 2015-10-24 2

A peek under the Blue Coat

Outline

1 Introduction

2 Storage: filesystems and registry

3 Binaries

4 Kernel and OS mechanisms

5 Understanding internals

6 Security mechanisms

7 Conclusion

Ruxcon - 2015-10-24 3

A peek under the Blue Coat

What? Why?

Blue Coat ProxySG?
enterprise (Web) proxy

one of the most deployed in big companies
lots of complex features:

URL categorization (WebSense and others)
video streaming / instant messaging specific
handling
MAPI and SMB proxy / cache / prefetcher
etc.

runs proprietary SGOS

Why research ProxySG?
widely used in Airbus Group

interesting target for malicious actors: log bypass, Internet exposed, MITM, etc.
no known previous research: unknown security level

security bulletins: mostly OpenSSL and Web administration interface bugs
Ruxcon - 2015-10-24 4

A peek under the Blue Coat

Research

Study objectives:

assess the global security level

write recommendations for secure deployment

be prepared for forensics in case of a compromised ProxySG

Why publish?

first public info but surely not first research

foster research =⇒ better security

Today’s presentation:

raw technical results, as a starting point for research

goes from low level (FS) to high level, following our approach

applies to all ProxySG models and 6.x versions up to Q1 2015

Ruxcon - 2015-10-24 5

A peek under the Blue Coat

Getting started

Running ProxySG:

hardware: commodity x86 CPUs, HDD, etc.

VMware appliances

Common versions:

5.5: older version, EOL Aug 2014

6.2: previous long term release, EOL Oct 2015

6.5: latest long term release, recommended by BC

To get a first look, we need to access the filesystem:

6.? (≥ 6.4): small FAT32 partition containing proprietary BCFS image

older versions: fully proprietary disk partitionning/data (no FAT32)

Ruxcon - 2015-10-24 6

A peek under the Blue Coat

Outline

1 Introduction

2 Storage: filesystems and registry

3 Binaries

4 Kernel and OS mechanisms

5 Understanding internals

6 Security mechanisms

7 Conclusion

Ruxcon - 2015-10-24 7

A peek under the Blue Coat

On disk data: intro

Hardware
Basic architecture: 3 disks (or more)

small CompactFlash or SSD for OS (FAT32)

2 or more drives for data (proprietary FS)

Filesystems
static, read-only FS for OS (BCFS):

OS files
low level (static) configuration: kernel
options, resource limits

cache engine FS based on hash
tables (CEFS) (Patent US7539818)

registry in CEFS for settings

Remarks
unknowns:

CEFS structures
log storage format

on-disk partition structures are very
complex

today: only static FS (BCFS) for OS
files

Ruxcon - 2015-10-24 8

A peek under the Blue Coat

System disk organization (BIOS mode)

Files on FAT32 partition
/sgos/boot/systems/system1
/sgos/boot/cmpnts/starter.si
/sgos/boot/cmpnts/boot.exe
/sgos/boot/meta.txt
/sgos/fbr.con

Both starter.si and system1 use BCFS

bootloader: starter.si
6 MiB

basic SGOS (UP kernel, drivers, no
application)

looks up available systems

displays GRUB-like boot menu

Real OS: system1
210 MiB
full blown OS:

SMP kernel
Web UI
actual applications
etc.

Ruxcon - 2015-10-24 9

A peek under the Blue Coat

Boot sequence (BIOS)

1 BIOS
2 MBR
3 boot sector of active partition
4 boot.exe, found by hardcoded sector number
5 kernel.exe, first file entry in starter.si FS
6 kernel starts sequencer.exe, second entry in starter.si
7 sequencer.exe parses the main.cfg script and starts the necessary drivers
8 main.cfg finally launches starter.exe which displays the boot menu
9 starter.exe loads the selected system

Ruxcon - 2015-10-24 10

A peek under the Blue Coat

BCFS (read-only FS) format
CP xxxx xxxx _HP_
.crc32 czk
.crc32 data
.HMAC czk (6.5)
.HMAC data (6.5)

CP xxxx xxxx _CZK
.data_size
.nr_cpce

+0xc00

CP xxxx xxxx _CE_
.elmnts {.nr .sz}
.offset = str table

+0xd0

CP xxxx xxxx _CE_
.elmnts {.nr .sz}
.offset = cpve table

+0x40

CP xxxx xxxx _CE_
.elmnts {.nr .sz}
.offset = cpie table

+0x40

CP xxxx xxxx _CE_
empty

+0x40

...

0x4000

string table

CPVE table

CPIE table

String Table

.size .offset

.size .offset

. . .

Strings

Files Table
CP xxxx xxxx _IE_
.abs_off
.rel_off
———–
.offset
.size

CP xxxx xxxx _IE_
.abs_off
.rel_off
———–
.offset
.size

...

Files content

How to extract?
1 read CPCE entries,

note offsets for
strings table and
files table

2 parse files table
(CPIE) linearly

3 get file name from
strings table

How to modify?
1 cannot increase file

size
2 fix CRC and HMAC

Ruxcon - 2015-10-24 11

A peek under the Blue Coat

System image configuration variables (CPVE)

offset and size specified by 3rd _CP_ _CE_ entry

modifying the variable implies fixing CRC/HMAC and reboot

variable names can be found in sequencer.exe

Structure
struct cpve_entry {

uint32_t magic1; /* _CP_ */
uint64_t unk;
uint32_t magic2; /* _VE_ */
uint16_t number;
uint16_t section;
uint32_t unk2;
uint64_t value; }

Known variables (section, number : description)

Section 4, kernel:
4,0: flags:

0x8: GDB monitor enabled
0x200: int3 at OS startup
0x400: kernel debug logs enabled

4,1: arch_flags
1: activate Write Protect in cr0

4,3: console_speed (in bauds)

Ruxcon - 2015-10-24 12

A peek under the Blue Coat

Cache Engine FS (CEFS): writable storage

hash-table object storage with disk backend
mostly used for cache data:

web content
CIFS files
MAPI mails
etc.

regular files are also supported, with prefix /legacy/cache_engine/

Some files (paths straight from the code, no typo)

.../persistent/replicated/authorized_keys

.../persistent/replicated/volatile//config/v9/registry/registry.xml

.../transient//snmp.log

.../persistent/replicated/licensing_certificate

Ruxcon - 2015-10-24 13

A peek under the Blue Coat

Registry: settings storage

tree structure used for all settings

entries are referenced by strings like “config:Authenticator:local_users”

on-disk storage: xml file on writable CEFS

URLs (admin rights needed)

/registry/show
/registry/registry.html
/registry/registry.xml
/registry/debug

Interesting CLI extensions (cf slide 24)

reg-set
reg-delete
reg-list
reg-trace

Ruxcon - 2015-10-24 14

A peek under the Blue Coat

Outline

1 Introduction

2 Storage: filesystems and registry

3 Binaries

4 Kernel and OS mechanisms

5 Understanding internals

6 Security mechanisms

7 Conclusion

Ruxcon - 2015-10-24 15

A peek under the Blue Coat

OS Filesystem organization
/

*.cfg

var/[...]/lib/lib(gcc_s|stdc++)_sgos.so

home/jenkins/workspace/SGOS6_sg_6_5_xx7/scorpius/sg_6_5_xx7/

bootchain/x86/release/

bin/x86_64/sgos_native/release/gcc_v4.4.2/

data files

stripped/

libs and programs

mp_cr/kernel.exe

storage/drivers.exe

Ruxcon - 2015-10-24 16

A peek under the Blue Coat

ELF files: kernel, libs, programs
Everything interesting is located in .../stripped/:

.exe, .exe.so and .so extensions (version 5 was using PE files)

32 or 64 bits ELF files, depending on model (RAM size?)

everything in C++, compiled with g++ with custom sgos target

lots of unit tests

more than 2600 source files referenced

everything is stripped, but lots of external symbols
heavy template use: AMI::Config_Data::Config_Data(AMI::Storage_Class, AMI::String_Ref const&, AMI::Shared_Ptr<AMI::Installed_Systems const>
const&, AMI::Shared_Ptr<AMI::Config_General const> const&, AMI::Shared_Ptr<AMI::Shell const> const&, AMI::Shared_Ptr<AMI::SSL const> const&,
AMI::Shared_Ptr<AMI::SMTP_Data const> const&, AMI::Shared_Ptr<AMI::BC_Threat_Protection const> const&, AMI::Shared_Ptr<AMI::Banner_Settings const> const&,
AMI::Shared_Ptr<AMI::Policy_Settings const> const&, AMI::Shared_Ptr<AMI::Statistics_Export_Settings const> const&)

“custom” ABI in 32 bits (probably gcc called with -mregparm):

EAX, EDX, ECX, stack

in 64 bits, standard SysV ABI:

RDI, RSI, RDX, RCX, R8, R9, stack

Ruxcon - 2015-10-24 17

A peek under the Blue Coat

Known code?

Interesting open source libraries (version numbers from 6.5 release, Aug 2014):

BGET: memory allocator (first dev in 1972!)

NET-SNMP 5.4.2.1 (2008-10-31)

newlib: libc

expat 1.95.2: XML parser (2001!)

libxml2 2.7.7-82143f4 (2010-11-04)

OpenSSH 6.3 (2013-09-13)

OpenSSL 1.0.1e (2013-02-11)

zlib 1.2.3 (2005-07-18)

Blue Coat states that they backport fixes regularly (without necessarily changing the version string).

Ruxcon - 2015-10-24 18

A peek under the Blue Coat

Outline

1 Introduction

2 Storage: filesystems and registry

3 Binaries

4 Kernel and OS mechanisms

5 Understanding internals

6 Security mechanisms

7 Conclusion

Ruxcon - 2015-10-24 19

A peek under the Blue Coat

Kernel

The kernel in practice
kernel access partially abstracted in
libknl_api.so
small (~800 KiB), basic primitives:

interrupt/exception handling
semaphores/locks
message passing
drivers

ds:1014h points to a “TEB”-like
structure

Some syscalls
Nop
Suicide
Enable_event_logging
Register_worker_address
Symbol_address
Processor_voltage
Semaphore_signal_all
Grow_stack

Ruxcon - 2015-10-24 20

A peek under the Blue Coat

Kernel: syscall

32 bits
call dword ptr ds:1018h

parameters in structure pointed by eax

kernel_req struc
field_0 dd ?
return_code dd ?
return_code2 dd ?
arg0 dd ?
arg1 dd ?
arg2 dd ?
arg3 dd ?
sys_num dd ?

kernel_req ends

64 bits
call [ds:0FFFFFF8000000020h]

parameters in structure pointed by rdi

knl_req64 struc
field_0 dq ?
retcode dq ?
arg0 dq ?
arg1 dq ?
arg2 dq ?
arg3 dq ?
sysnum dq ?
field_38 dq ?

knl_req64 ends

Ruxcon - 2015-10-24 21

A peek under the Blue Coat

Memory organization

Back to the 90s
protected mode

everything in ring 0 (mentioned in US7539818 patent ;)

ELF mapping: at boot, once and for all
Unpacking executables...

Unpacking sequencer.exe elapsed time: 0s, 0ms, 326us
Unpacking ata.exe elapsed time: 0s, 0ms, 413us

[...]
Relocating executables...

Relocating sequencer.exe elapsed time: 0s, 2ms, 356us
Relocating ata.exe elapsed time: 0s, 0ms, 559us

10 executables relocated; total unpack and reloc time 0s, 20ms, 550us

Ruxcon - 2015-10-24 22

A peek under the Blue Coat

Outline

1 Introduction

2 Storage: filesystems and registry

3 Binaries

4 Kernel and OS mechanisms

5 Understanding internals

6 Security mechanisms

7 Conclusion

Ruxcon - 2015-10-24 23

A peek under the Blue Coat

Making things easier: our tools

IDA plugins:

automatically comment function with source filename (from debug logs)

automatically rename functions from debug log strings

automated syscall recognition (with syscall name, parameters)

CLI structures dumper to list all CLI commands

BCFS: FUSE tool to mount system images:

file access: read/write (without size change)

CPVE access: read/write

automatic CRC/HMAC calculation

Tools are internal PoCs and are not going to be released.

Ruxcon - 2015-10-24 24

A peek under the Blue Coat

Getting more info: useful tricks

Enable debug info, by modifying BCFS (physical access or RCE needed):

kernel “printk ”: CPVE 4,0 |= 0x400

debug mode: set customer_release to 0 in main_cr.cfg

230+ CLI extensions in debug mode:

list with “.”, access with “.extension”

examples: cfg, policy, cag, mgmt, etc.

Example commands
.mgmt show-adv-urls

.svc ashowstate

.<ext> logaddmask all then .<ext> logshow

.policy dbgtraceon

Ruxcon - 2015-10-24 25

A peek under the Blue Coat

CLI extension example

Ruxcon - 2015-10-24 26

A peek under the Blue Coat

GDB
Kernel includes GDB stub! But finding how to activate it took me weeks :(

CPVE 4,0 |= 0x8
multiplexed on COM1 with console
send 0x18, 0x14 on COM port to activate
(non-standard) text paging is handled server-side, patch client or use monitor
util height 1000000

GDB monitor extensions (kernel side)
Current debug extensions:
name knl, Function 0x1261500
name util, Function 0x1028786E0
name scorpius, Function 0x1028487E0

Some knl extensions
processes: display all active
processes.

pd: display the contents of a process
descriptor.

images: display details of loaded ELF
files.

Ruxcon - 2015-10-24 27

A peek under the Blue Coat

Practical understanding: HTTP parsing
Goal: find function for HTTP response parsing

activate HTTP debug mode at https://x.x.x.x:8082/HTTP/debug
make request through proxy
get log
read interesting function name
look for function in libhttp.exe.so

Example log (simplified, most recent first):

HTTP CW 95B72F20: Parse_request called. beg=57DE3000 end=57DE30DC length=220
HTTP CW 95B72F20: Parse_request
HTTP CW 95B72F20: Should_tunnel_on_error
HTTP CW 95B72F20: Read_request
HTTP CW 95B72F20 POLICY: Evaluating PE_POLICY_CHECKPOINT_NEW_CONNECTION
HTTP CW 95B72F20: Transaction_startup
HTTP CW 95B72F20: Init_state

Ruxcon - 2015-10-24 28

A peek under the Blue Coat

Going deeper: Hell
Locating the code is the easy part.
Problems:

HUGE functions (16 KiB!, see CFG)

C++ everywhere

IDA struggles with calling convention

threads, everywhere!

Dynamic debugging howto:

find image base using monitor knl
image libhttp.exe.so in GDB

relocate binary in IDA

set breakpoint in Proxy SG CLI: conf
t; debug; breakpoint-set 0 B X
<ADDR>

break and connect!

Ruxcon - 2015-10-24 29

A peek under the Blue Coat

Outline

1 Introduction

2 Storage: filesystems and registry

3 Binaries

4 Kernel and OS mechanisms

5 Understanding internals

6 Security mechanisms

7 Conclusion

Ruxcon - 2015-10-24 30

A peek under the Blue Coat

Application security

authentication:
local passwords are hashed with FreeBSD MD5 crypt (1), Blowfish supported
dozens of schemes supported: LDAP, AD, etc.

default protocols: only HTTPS and SSH

read-only or admin accounts

OS trust:
PKCS7 signed updates (SHA-512/RSA-2048)
local images:

< 6.5: CRC only
≥ 6.5: HMAC SHA-1

crypto:
openssl
critical random data is generated securely

Ruxcon - 2015-10-24 31

A peek under the Blue Coat

Administration interface (Flash)

Ruxcon - 2015-10-24 32

A peek under the Blue Coat

Administration interface (Java)

Ruxcon - 2015-10-24 33

A peek under the Blue Coat

Administration interface

actually POST s CLI commands, in an enable shell

restricted commands for read-only users
Java interface specifics:

also uses a kind for RPC mechanism (/Secure/Local/console/pod)
also implements its own HTTPS “client”

Request (simplified)

POST /Secure/Local/console/install_upload_action/cli_post_setup.txt
Host: 10.0.10.3:8082
Authorization: Basic YWRtaW46dGVzdA==
[...]
Cookie: bcsi.logout=0; BCSI_MC=605032960:1

––––––––––––––-7d518638300904
Content-Disposition: form-data; name="file"

show version
––––––––––––––-7d518638300904–

Response data
ProxySG VA 1818181818#(config)show version
Version: SGOS 6.4.1.2 MACH5 Edition
Release id: 90192
UI Version: 6.4.1.2 Build: 90192
Serial number: XXXXXXXXXX
NIC 0 MAC: 000FF9B6006F
There were 0 errors and 0 warnings

Ruxcon - 2015-10-24 34

A peek under the Blue Coat

System-level security

BAD
no stack canaries

no ASLR

everything in ring0

kernel callgate at a fixed address

GOOD
NX enabled on most platforms since 6.2. 300/600 support added in 6.5.7.1 and 6.2.16.3

BGET heap: asserts check for meta-data coherence (unlink attacks impossible)

read-only FS for binaries makes it (way) harder to backdoor OS

physical access (or code exec) is needed to change system image as updates
are signed

Ruxcon - 2015-10-24 35

A peek under the Blue Coat

Exploitability

Facilitating exploits
previous slide :)

vtables everywhere

only C++ code => more memory corruption bugs (vs script/safer languages)

Hurdles
no second chance (ring0)

no ASLR but mapping different for each version

custom payload needed

guard pages

Ruxcon - 2015-10-24 36

A peek under the Blue Coat

Outline

1 Introduction

2 Storage: filesystems and registry

3 Binaries

4 Kernel and OS mechanisms

5 Understanding internals

6 Security mechanisms

7 Conclusion

Ruxcon - 2015-10-24 37

A peek under the Blue Coat

Conclusion

Findings
unusual, entirely proprietary OS design

no user/kernel isolation or exploit hardening (historical for performance?)

no vulnerabilities found (I didn’t look for them!). . .

. . . but Blue Coat release notes document plenty of fixes for “software restarts”

Recommendations
use a dedicated (V)LAN for administration

monitor the event log

investigate reboots

physically protect appliances

use secure passwords (of course!)

Ruxcon - 2015-10-24 38

A peek under the Blue Coat

Evolutions in ProxySG

Security enhancements in recent versions
NX support for 300/600 added in 6.5.7.1 and 6.2.16.3

bootchain and system image validation (hashes published by Blue Coat)

Secure boot in pre-release, available in a future release

debug (GDB, CLI extensions) support removed

We are currently discussing further security enhancements, such as user/supervisor
separation, with Blue Coat. Release timing and platform support are still under
discussion.

Ruxcon - 2015-10-24 39

A peek under the Blue Coat

End

Questions?

Thanks!
Stéphane D. for his work on BCFS and the tikz figures :)

Stéphane L. and AGI for giving me the opportunity to work on Blue Coat

Ruxcon - 2015-10-24 40

A peek under the Blue Coat

Outline

8 Backup slides

Ruxcon - 2015-10-24 41

A peek under the Blue Coat

System disk organization (UEFI mode)

Files on FAT32 partition
/sgos/boot/systems/diag.si
/sgos/boot/systems/system.si
/sgos/boot/meta.txt
/sgos/fbr.con
/EFI/BOOT/BOOTx64.EFI
/EFI/BOOT/osloader.si

.si files use BCFS

New: UEFI
BOOTx64.EFI replaces starter.si

osloader.si contains a copy of
BOOTx64.EFI

New: diag
Linux diagnostic system:

check hardware health

interesting cli binary, with symbols :)

Ruxcon - 2015-10-24 42

A peek under the Blue Coat

Boot sequence (UEFI)

1 UEFI
2 BOOTx64.EFI
3 desired system is selected
4 prekernel.exe is started, first file entry in system.si FS
5 prekernel.exe setups GDT, IDT, etc. and starts kernel.exe (2nd entry)
6 kernel starts sequencer.exe, (3rd entry)
7 sequencer.exe parses the main_cr.cfg script
8 main_cr.cfg includes main_common.cfg which starts everything

Way simpler than BIOS boot.

Ruxcon - 2015-10-24 43

	Introduction
	Storage: filesystems and registry
	Binaries
	Kernel and OS mechanisms
	Understanding internals
	Security mechanisms
	Conclusion
	Appendix
	Backup slides

