
YUMMY YUMMY FRUIT SALAD:

AN ANALYSIS OF APPLE PAY

Image stolen from: https://scratch.mit.edu/projects/10813101/

$whoami

 Principle Consultant @ Payment Security

Consulting

 Usually do PCI based work (hey, it’s a living)

 Enjoy hardware stuff

 Also enjoy poking at iOS applications

 Did a silly badge this year for the Hardware

Hacking Village – hope you got one!

 Trying to encourage more people to break stuff.

 See https://www.github.com/peterfillmore for

some (badly) written code.

https://www.github.com/peterfillmore

Agenda

 What is ApplePay exactly

 Apple Pay Architecture

 XPC – How the components communicate

 Registering a card

 Using a card

 Remote wiping of cards

 Issues

 Tools developed and used

 References

ApplePay

 Another in the long running examples of

Apple “inventing” something

 Nothing but a lot of existing technologies

bolted together with a fancy façade!

 Publicly available information is scant –

people who work with the stuff are NDA’d
heavily 

 Good thing I blew a grand on an iPhone

6

ApplePay consists of (iPhone 6):

NXP 65v10

PN548
Secure

Element

AMS AS3923

Power Booster

Secure Element

http://www.chipworks.com/about-

chipworks/overview/blog/inside-the-iphone-6-and-iphone-6-plus

Software

Passkit.

Framework

Nearfield.

framework

passd

nfcd

seld

PN548_HAL.

dylib

PN548_API.

dylib

PN548.

dylib

PN548 Drivers

PasskitUI

Passkit

Applications Frameworks Daemons
Hardware

Drivers

XPC

Application
System

Resource

XPC

Service

Mach

Message

Decode

and Call

 The primary method of inter-process communication

in iOS

 Client/Server Model

 Designed to provide stability and privilege

separation

 Passes serialized messages via a MACH message call

XPC Services used by

ApplePay

{…Label = "com.apple.seld";

MachServices = {

"com.apple.seld" = 1;

"com.apple.seld.aps" = 1; };

Program = "/usr/libexec/seld";

RunAtLoad = 1;

UserName = mobile;}

{ … Label = "com.apple.nfcd";

MachServices =

{ "com.apple.nfcd" = 1;};

ProcessType = Interactive;

Program = "/usr/libexec/nfcd";

UserName = mobile;}

{ …

EnableTransactions = 1;

Label = "com.apple.passd";

….

MachServices = {

"com.apple.passd.aps" = 1;

"com.apple.passd.bulletins" = 1;

"com.apple.passd.in-app-payment" = 1;

"com.apple.passd.library" = 1;

"com.apple.passd.payment" = 1; };

POSIXSpawnType = Adaptive;

ProgramArguments = (

"/System/Library/Frameworks/PassKit.frame

work/passd");

ThrottleInterval = 0;

UserName = mobile;}

nfcd passd

seld

Client Must have the

correct entitlements to

use an XPC Service

 com.apple.nfcd.se

 com.apple.nfcd.debug

 com.apple.nfcd.info

 com.apple.seld.debug

 com.apple.seld.cm

NFCD SELD

Example calling an XPC

Service
Create Connection
xpc_connection_t connection =

xpc_connection_create_mach_service("com.apple.nfcd", NULL, 0);

Set Handler
xpc_connection_set_event_handler(connection, ^(xpc_object_t object) {

Create XPC Object
xpc_object_t msgobject = xpc_dictionary_create(NULL,NULL,0);

xpc_object_t object = xpc_dictionary_create(NULL, NULL, 0);

xpc_dictionary_set_int64(msgobject, "Controller", 6);

Send object and get result
xpc_object_t reply =

xpc_connection_send_message_with_reply_sync(connection, object);

XPC Sum-up

 Calling applications must have appropriate

entitlements to use an XPC service.

 XPC services run under a nominated account

(“mobile” in the case of NFC components)

 Harder to exploit from userland.

Better people then I have looked at this stuff:

References:

 Ian Beer -
http://googleprojectzero.blogspot.com.au/2015/

09/revisiting-apple-ipc-1-distributed_28.html

http://googleprojectzero.blogspot.com.au/2015/09/revisiting-apple-ipc-1-distributed_28.html

Enrolling a card – Step 1
Passbook

JSON of AID, card identifier, sanitized PAN

and URL for the terms and conditions

Send “card to authorise” details to apple

Uses Secure Element Identifier and

AppleToken for authentication

https://nc-pod2-smp-device.apple.com/broker/v2/devices/<seID>/cards

Authentication

Server

Enrolling a card – Step 2
Passbook

XML of terms and conditions

Retrieve “Terms and Conditions” from

provided URL

https://nc-pod2-smp-device.apple.com/broker/v1/assets/<t&c version>

Authentication

Server

https://nc-pod2-smp-device.apple.com/broker/v1/assets/<t&c

Enrolling a card – Step 3
Passbook

Authentication

Server

URL of generated pass

Send authorization details:

CVV2, Device Name, Location, Phone

Number

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

<seID>/cards/<identifier>/enable

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card – Step 4
Passbook

Authentication

Server

Retreive the generated PassKit pass

Zipped package containing:

Images, JSON containing pass details and

the signature

https://nc-pod2-smp-device.apple.com/broker/v1/passes/

paymentpass.com.apple/<generateURL>

https://nc-pod2-smp-device.apple.com/broker/v1/passes/

Enrolling a card – Step 5
securityd

Authentication

Server

Verify certificates using OCSP

OCSP response

(check with openssl:

Openssl ocsp –respin <response> -text

http://ocsp.apple.com/ocsp03-wwdr02/<hash of cert>

http://ocsp.apple.com/ocsp03-wwdr02/<hash

Enrolling a card – Step 6
seld

Authentication

Server

Retrieve commands to run on the Secure

Element, contains certificates, supported

cards and secure element Id.

List of EMV commands to execute on the

secure element.

http://nc-pod2-smp-device.apple.com/tsm/

<seId>/get_pending_commands

http://nc-pod2-smp-device.apple.com/tsm/

Enrolling a card – Step 7
Passbook

Authentication

Server

Retrieve a list of the authentication methods

supported

JSON of authentication method data.

e.g email, SMS or phone call

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

passes/paymentpass.com.apple/<providedURL>/activationMethods

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card – Step 8
Passbook

Authentication

Server

Send selected method identifer

Confirm Response

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

passes/paymentpass.com.apple/<providedURL>/sendActivationMethod

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card – Step 9
seld Authentication

Server

Send results of EMV command execution

from the secure element

Confirm Response

http://nc-pod2-smp-device.apple.com/tsm/

<seId>/get_pending_commands

http://nc-pod2-smp-device.apple.com/tsm/

Enrolling a card – Step 10
Passbook

Authentication

Server

Send activation code

Provide URL to generated PassKit Pass

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

passes/paymentpass.com.apple/<providedURL>/activationCode

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card – Step 11
Passbook

Authentication

Server

Retreive the generated PassKit pass

Zipped package containing:

Images, JSON containing pass details and

the signature

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

passes/paymentpass.com.apple/<providedURL>/

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card – Step 12
passd Authentication

Server

Register device PAN with VISA

Authentication token

https://vntnotificationservice.visa.com/TxnHist/1/1/devices/

<something>/registrations/dpan/<generated DPAN>

https://vntnotificationservice.visa.com/TxnHist/1/1/

Enrolling a card – Step 13
Passbook

Authentication

Server

Get transactions from VISA

HTTP Code 304 – no content

https://vntnotificationservice.visa.com/TxnHist/1/1/devices/

<something>/dpan/<generated DPAN>/transactions

https://vntnotificationservice.visa.com/TxnHist/1/1/

Using a card

Remote Wiping of a Card

What is right

 Secure element provides a highly limited attack

surface. – all sensitive information is loaded
encrypted

 Tokenization means that your personal account

number is not stored or used by the device (I

haven’t found anything but a sanitized version)

 Issuer of the card can deactivate the token

remotely (has happened to me twice so far)

 Applications which use ApplePay must have the

correct entitlements to use it.

 You have to authenticate to use ApplePay

Bad verification of the

cardholders

 Verification methods and back end are chosen

by the card issuers/bank

 In the case of Wells Fargo the verification code

can be sent through email, text or call to them.

 Banks were skipping verification checks – allowing

for the ability to load stolen cards onto devices

with minimal verification

http://www.nytimes.com/2015/03/17/business/banks-find-fraud-abounds-in-apple-pay.html?_r=0

Depends on existing

contactless standards

 Same attacks are possible on ApplePay

 This is because it is the issuers that control the

transaction – not Apple

 And because reasons it has to support these

broken modes

 US market is still heavily invested in MagStripe –

and this means broken contactless modes as

 Proper EMV rollout in the US is not going as quick
as thought (In a month there in 2015 I they my

EMV chip two times…)

 See my talk from last year (Crash & Pay)

Cloning Demo!

Transactions are logged

and stored unencrypted

• Located in

/var/mobile/Library/passes/passes23.sqlite

• Contains amounts, (accurate) locations,

merchant location etc

• Make sure you remote wipe your ApplePay

device if lost!

SQL Dump Demo

Android Pay

 Similar to ApplePay with the implementation

 Intended to replace “Google Wallet”

 Standalone application rather then imbedded into the OS

 Can’t use it on a ‘rooted’ device

 http://nelenkov.blogspot.com.au/2012/08/exploring-google-

wallet-using-secure.html

 http://nelenkov.blogspot.com.au/2012/08/android-secure-

element-execution.html

 http://forum.xda-developers.com/google-nexus-5/help/android-

pay-custom-rom-t3199843

http://nelenkov.blogspot.com.au/2012/08/exploring-google-wallet-using-secure.html
http://nelenkov.blogspot.com.au/2012/08/android-secure-element-execution.html
http://forum.xda-developers.com/google-nexus-5/help/android-pay-custom-rom-t3199843

SamsungPay

 Based off “LoopPay” which uses traditional
magstripe over NFC. (you heard me right)

 Idea is that you can use it with old terminals.

 Utilises tokenization again.

 Doesn’t work “rooted”

 Further research needed!

Logging function calls

using tweaks

1. Dump all the headers from the device

$classdump-dyld –o <dump dir> -r / -c

2. Generate the “Tweak.xm” file to log the service you
want

$logify.pl *.h > Tweak.xm

3. Create the tweak project

$nic.pl

NIC 2.0 - New Instance Creator------------

[9.] iphone/tweak

4. Copy the Tweak.xm to the project and compile

Logging function calls

using tweaks

 Generated a whole heap of iOS tweaks to log

calls to work out what was happening.

 Updated my RFIDiot scripts to do ApplePay

Transations

 Quick IDA scripts to rename “redacted” functions

in some binaries.

 Test XPC programs to test reversed functions.

Solving the “Redacted”

problem

$xcrun atos –arch arm64 –o ~/Library/Developer/Xcode

/iOS DeviceSupport8.4/(XXX)/Symbols/System/Library

/PrivateFrameworks/PassKitCore.framework/

PassKitCore 0x18d3d5298

$__copy_helper_block_162 (in PassKitCore) + 0

Use the Xcode tool “atos” - convert numeric addresses to symbols of

binary images or processes.

Requires that the iOS device under test has been connected to the

Mac to generate the symbolic files

References
 Iphonedevwiki – http://iphonedevwiki.net/index.php

 “Snakeninny and Hangcom” – iOS App Reverse

Engineering–

https://github.com/iosre/iOSAppReverseEngineering

 Ian Beers XPC preso at 44 con and Google Zero

http://googleprojectzero.blogspot.com.au/2015/09/rev

isiting-apple-ipc-1-distributed_28.html

 Tielei Wang, Hao Xu, Xiaobo Chen of Team Pangu -

https://www.blackhat.com/docs/us-15/materials/us-15-

Wang-Review-And-Exploit-Neglected-Attack-Surface-

In-iOS-8.pdf

 Sebas Guerro (@0xroot) “Demystifying Apple 'Pie' &

TouchID” -

http://www.slideshare.net/0xroot/demystifying-apple-

pie-touchid

http://iphonedevwiki.net/index.php
https://github.com/iosre/iOSAppReverseEngineering
http://googleprojectzero.blogspot.com.au/2015/09/revisiting-apple-ipc-1-distributed_28.html
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-Review-And-Exploit-Neglected-Attack-Surface-In-iOS-8.pdf
http://www.slideshare.net/0xroot/demystifying-apple-pie-touchid

Source Code

 https://github.com/michael-

quinlan/swift_basic_apple_pay

 https://github.com/beatty/applepay_crypto_de

mo

 https://github.com/peterfillmore/ApplePayStuff

https://github.com/michael-quinlan/swift_basic_apple_pay
https://github.com/beatty/applepay_crypto_demo

