\

b

o

_ Fruit Salad Yunmy Yummy!

9 \
- F |
\%m 4
. ,/
" '0',‘

a

YUMI\/\Y YUI\/\I\/\Y‘FRUIT SALAD:
AN ANALYSIS OF APPLE PAY

Image stolen from: https://scratch.mit.edu/projects/10813101/

Swhoami

vV v v Vv

v

Principle Consultant @ Payment Security
Consulting

Usually do PCI based work (hey, it's a living)
Enjoy hardware stuff
Also enjoy poking at IOS applications

Did a silly badge this year for the Hardware
Hacking Village — hope you got onel

Trying to encourage more people to break stuff.

See hitps://www.agithub.com/peterfilmore for
some (badly) written code.

https://www.github.com/peterfillmore

Agenda

What is ApplePay exactly

Apple Pay Architecture

XPC - How the components communicate
Registering a card

Using a card

Remote wiping of cards

Issues

Tools developed and used

vV VvV vV vV vV v v VY

References

ApplePay

» Another in the long running examples of
Apple “inventing” something

» Nothing but a lot of existing technologies
bolted together with a fancy facadel

» Publicly available information is scant —
people who work with the stuff are NDA'd
heavily ®

» Good thing | blew a grand on an iPhone
6

ApplePay consists of (IPhone 6):

NXP 65v10

PN548

Secure
Element

Secure Element

chTrjworks |

http://www.chipworks.com/about-
chipworks/overview/blog/inside-the-iphone-6-and-iphone-6-plus

Software

Applications Frameworks

Nearfield.
framework

Passkit.
Framework

Daemons

nfcd

seld

passd

Hardware
Drivers

PN548 Drivers
PN548 HAL.
dylib

PN548_API.
dylib

PN548.
dylib

XPC

Mach XPC Decode

Agglieeiien Message Service and Call

» The primary method of inter-process communication
in iOS

» Client/Server Model

» Designed to provide stability and privilege
separation

» Passes serialized messages via a MACH message call

XPC Services used by

ApplePay
nfcd

{... Label ="com.apple.nfcd";
MachServices =
{"com.apple.nfcd" = 1;};

ProcessType = Interactive;

Program = "/usr/libexec/nfcd";

UserName = mobile;}

seld

{...Label ="com.apple.seld";
MachServices = {
"‘com.apple.seld”' = 1;

"com.apple.seld.aps'=1; };
Program = "/usr/libexec/seld";
RunAtLoad = 1;

UserName = mobile;}

passd
{..

EnableTransactions = 1;
Label ="com.apple.passd";

MachServices = {
"com.apple.passd.aps’ = 1;
"com.apple.passd.bulletins' = 1;
"com.apple.passd.in-app-payment’ = 1;

"com.apple.passd.library” = 1;
"com.apple.passd.payment” =1; 1},
POSIXSpawnType = Adaptive;
ProgramArguments =
"/System/Library/Frameworks/PassKit.frame
work/passd”);

Throttlelnterval = 0;

UserName = mobile;}

Client Must have the

correct enfitlements 1o
use an XPC Service

NFCD

» com.apple.nfcd.se

SELD

» com.apple.seld.debug

» com.apple.nfcd.debug » com.apple.seld.cm

» com.apple.nfcd.info

&1, =sel hasEntitlement_; “hasEntitlement:"
X2, aCom_apple _nf_ 1 ; "com.apple.nfcd.se’

XA, s28
objc_msgSend

we, #0, loc_106618DCA

Example calling an XPC
Service

Create Connection
Xpc_connection_t connection =
Xpc_connection_create_mach_service('com.apple.nfcd”, NULL, 0);

Set Handler
Xpc_connection_set_event_handler(connection, A(xpc_object_t object) {

Create XPC Object

XpC_object_t msgobject = xpc_dictionary_create(NULL,NULL,0);
XpC_object_t object = xpc_dictionary_create(NULL, NULL, 0);
xpc_dictionary_set_inté4(msgobject, "Conftroller”, 6);

Send object and get result
Xpc_object_t reply =
XpC_connection_send_message_with_reply_sync(connection, object);

XPC Sum-up

» Calling applications must have appropriate
entitlements to use an XPC service.

» XPC services run under a nominated account
(“mobile” in the case of NFC components)

» Harder to exploit from userland.
Better people then | have looked at this stuff:
References:

» lan Beer -

http://gooaleprojecizero.blogspot.com.au/2015/
09 /revisiting-apple-ipc-1-distributed 28.himl

http://googleprojectzero.blogspot.com.au/2015/09/revisiting-apple-ipc-1-distributed_28.html

Enrolling a card — Step |

Authentication

Passbook
Server

Send “card to authorise” details to apple
Uses Secure Element Identifier and
AppleToken for authentication

https://nc-pod2-smp-device.apple.com/broker/v2/devices/<selD>/cards

JSON of AID, card identifier, sanitized PAN
and URL for the terms and conditions

Enrolling a card — Step 2

Authentication

Passbook
Server

Retrieve “Terms and Conditions” from
provided URL

https://nc-pod2-smp-device.apple.com/broker/v1/assets/<t&c version>

XML of terms and conditions

https://nc-pod2-smp-device.apple.com/broker/v1/assets/<t&c

Enrolling a card — Step 3

Authentication

Passbook
Server

Send authorization details:
CVV2, Device Name, Location, Phone
Number

https://nc-pod2-smp-device.apple.com/broker/v2/devices/
<selD>/cards/<identifier>/enable

URL of generated pass

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card - Step 4

Authentication

Passbook
Server

Retreive the generated PassKit pass

https://nc-pod2-smp-device.apple.com/broker/v1/passes/
paymentpass.com.apple/<generateURL>

Zipped package containing:
Images, JSON containing pass details and
the signature

https://nc-pod2-smp-device.apple.com/broker/v1/passes/

Enrolling a card — Step 5

Authentication

securityd e

Verify certificates using OCSP

http://ocsp.apple.com/ocsp03-wwdr02/<hash of cert>

OCSP response
(check with openssl.
Openssl ocsp —respin <response> -text

http://ocsp.apple.com/ocsp03-wwdr02/<hash

Enrolling a card — Step 6

Authentication

seld
Server

Retrieve commands to run on the Secure
Element, contains certificates, supported
cards and secure element Id.

http://nc-pod2-smp-device.apple.com/ism/
<seld>/get_pending_commands

List of EMV commands to execute on the
secure element.

http://nc-pod2-smp-device.apple.com/tsm/

Enrolling a card — Step 7

Authentication

Passbook
Server

Retrieve a list of the authentication methods
supported

https://nc-pod2-smp-device.apple.com/broker/v2/devices/
passes/paymentpass.com.apple/<providedURL>/activationMethods

JSON of authentication method data.
e.g email, SMS or phone call

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card - Step 8

Authentication

Passbook
Server

Send selected method identifer

https://nc-pod2-smp-device.apple.com/broker/v2/devices/
passes/paymentpass.com.apple/<providedURL>/sendActivationMethod

Confirm Response

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card - Step 9

seld Authentication
Server

Send results of EMV command execution
from the secure element

http://nc-pod2-smp-device.apple.com/ism/
<seld>/get_pending_commands

Confirm Response

http://nc-pod2-smp-device.apple.com/tsm/

Enrolling a card — Step 10

Authentication

Passbook
Server

Send activation code

hitps://nc-pod2-smp-device.apple.com/broker/v2/devices/
passes/paymentpass.com.apple/<providedURL>/activationCode

Provide URL to generated PassKit Pass

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card — Step 11

Authentication

Passbook
Server

Retreive the generated PassKit pass

https://nc-pod2-smp-device.apple.com/broker/v2/devices/
passes/paymentpass.com.apple/<providedURL>/

Zipped package containing:
Images, JSON containing pass details and
the signature

https://nc-pod2-smp-device.apple.com/broker/v2/devices/

Enrolling a card — Step 12

passd Authentication
Server

Register device PAN with VISA

https://vntnotificationservice.visa.com/TxnHist/1/1/devices/
<something>/registrations/dpan/<generated DPAN>

Authentication token

https://vntnotificationservice.visa.com/TxnHist/1/1/

Enrolling a card — Step 13

Authentication

Passbook
Server

Get transactions from VISA

https://vninotificationservice.visa.com/TxnHist/1/1/devices/
<something>/dpan/<generated DPAN>/transactions

HTTP Code 304 — no content

https://vntnotificationservice.visa.com/TxnHist/1/1/

Remote Wiping of a Card

What is right

» Secure element provides a highly limited attack
surface. — all sensitive information is loaded
encrypted

» Tokenization means that your personal account
number is not stored or used by the device (I
haven't found anything but a sanitized version)

» Issuer of the card can deactivate the token
remotely (has happened to me twice so far)

» Applications which use ApplePay must have the
correct entitlements to use if.

» You have to authenticate to use ApplePay

Bad verification of the
cardholders

@ HoME QQ SEARCH @l]fNﬂUﬂﬂfkmiml‘ﬁ

Pointing Fingers in Apple Pay Fraud

MARCH 1, 2015

http://www.nytimes.com/2015/03/17/business/banks-find-fraud-abounds-in-apple-pay.html2_r=0

» Verification methods and back end are chosen
by the card issuers/bank

» In the case of Wells Fargo the verification code
can be sent through email, text or call to them.

» Banks were skipping verification checks — allowing
for the ability to load stolen cards onto devices
with minimal verification

Depends on existing

contactless standards

>
>

Same attacks are possible on ApplePay

This is because it is the issuers that control the
transaction — not Apple

And because reasons it has to support these
broken modes

US market is still heavily invested in MagStripe -
and this means broken contactless modes as

Proper EMV rollout in the US is not going as quick
as thought (In a month there in 2015 | they my
EMV chip two fimes...)

See my talk from last year (Crash & Pay)

Cloning

Transactions are logged
and stored unencrypted

. transaction_date v
466730751.274887
466730429.932347
463396260.956939
463385957.748216
463383730.269593
463370164.361298
463302464.723265
463302409.874257

location_date

location_latitude

466730751.742518 -3.7922945431982598
466730440.330548 -3.7922949382049303
4633096272.946306 -3.7922943253348997
463385969.678485 -3.7922948910434698
463383655.927718 -3.7922967957155102

null 0.0

463302438.044367 -3.79227458406509303
463302409.916261 -3.7922036050834

Located in
/var/mobile/Library/passes/passes23.sglite
Contains amounts, (accurate) locations,

merchant location efc
Make sure you remote wipe your ApplePay
device if lost!

location_longitude
145.00696355123301
145.006687642631399
145.00688488673401
145.00696156844209
145.00666969828201
0.0
145.006B689663772
145.00686534785899

location_altitude
2.002027511596701
2. 2B87B646685058601
3.0098686218262

006217956543001

=
2
..-.
“
2
"
=
=
2

2.
.0
19.1510009765625
23.2420978546143

Android Pay

Similar to ApplePay with the implementation
Intended to replace “"Google Wallet”
Standalone application rather then imbedded into the OS

Can't use it on a ‘rooted’ device

vV v v v Vv

http://nelenkov.blogspot.com.au/2012/08/exploring-google-
wallet-using-secure.ntml

» hitp://nelenkov.blogspot.com.au/2012/08/android-secure-
element-execution.himl

» hitp://forum.xda-developers.com/gooagle-nexus-5/help/android-
pay-custom-rom-13199843

http://nelenkov.blogspot.com.au/2012/08/exploring-google-wallet-using-secure.html
http://nelenkov.blogspot.com.au/2012/08/android-secure-element-execution.html
http://forum.xda-developers.com/google-nexus-5/help/android-pay-custom-rom-t3199843

SamsungPay

v

Based off “LoopPay” which uses traditional
magstripe over NFC. (you heard me right)

ldea is that you can use it with old terminails.
Utilises tokenization again.
Doesn’'t work “rooted”

vV v VvV Yy

Further research needed!

Logging function calls
using tweaks

1. Dump all the headers from the device
Sclassdump—dy ECEESSEENSIIENGNT> - / -C

2. Generate the “Tweak.xm” file to log the service you
Welall

Slogify.pl *.h > Tweak.xm
3. Create the tweak project
SnicsEil

[9.] iphone/tweak
4. Copy the Tweak.xm to the project and compile

Logging function calls
using tweaks

» Generated a whole heap of iOS tweaks to log
calls to work out what was happening.

» Updated my RFIDioft scripts to do ApplePay
Transations

» Quick IDA scripts fo rename “redacted” functions
iINn some binaries.

» Test XPC programs to test reversed functions.

Solving the "Redacted”
problem

H 5 L) i
:A00008618D37E76Y redacted 28
-000000818D3FEYOL
:A0000B618D3I7ET 6, var_ 28
:A0000BA18D3AVET 6, var_18

- 000000018D3FEYOL
-000000018D3FEYOL

:ARABABM18D3TETGSE
:A0ABABA18D3TETGE
:00000BO1BD3VETY O
tH000008618D3VETYY

LA CNCHCHCHCHCRC B 1

Use the Xcode tool “atos” - convert numeric addresses to symbols of
binary images or processes.

Requires that the iOS device under test has been connected to the
Mac to generate the symbolic files

$xcrun atos —arch arm64 -o ~/Library/Developer/Xcode
/10S DeviceSupport8.4/ (XXX)/Symbols/System/Library
/PrivateFrameworks/PassKitCore.framework/
PassKitCore 0x18d3d5298

$ copy helper block 162 (in PassKitCore) + O

References

lohonedevwiki — http://iphonedevwiki.net/index.php

“Snakeninny and Hangcom™ — iOS App Reverse
Engineering-
https://github.com/iosre /IOSAppReverseEngineering

» lan Beers XPC preso at 44 con and Google Zero
http://googleprojecizero.blogspot.com.au/2015/09/rev
Isiting-apple-ipc-1-distributed 28.himl

» Tielei Wang, Hao Xu, Xiaobo Chen of Team Pangu -
https://www.blackhat.com/docs/us-15/materials/us-15-
Wang-Review-And-Exploii-Neglected-Attack-Surface-
IN-iOS-8.pdf

» Sebas Guerro (@0xroot) “Demystifying Apple 'Pie’ &
TouchID" -
hitp://www.slideshare.net/0Oxroot/demystifying-apple-
pie-touchid

http://iphonedevwiki.net/index.php
https://github.com/iosre/iOSAppReverseEngineering
http://googleprojectzero.blogspot.com.au/2015/09/revisiting-apple-ipc-1-distributed_28.html
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-Review-And-Exploit-Neglected-Attack-Surface-In-iOS-8.pdf
http://www.slideshare.net/0xroot/demystifying-apple-pie-touchid

Source Code

» hitps://aithub.com/michael-
quinlan/swift basic apple pay

» https://github.com/beaity/applepay crypio de
mo

» https://github.com/peterfilmore/ApplePayStuff

https://github.com/michael-quinlan/swift_basic_apple_pay
https://github.com/beatty/applepay_crypto_demo

